[表示 : 全て 最新50 1-99 101- 201- 301- 401- 2chのread.cgiへ]
Update time : 12/29 06:04 / Filesize : 467 KB / Number-of Response : 448
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

現代数学の系譜11 ガロア理論を読む2



290 名前:現代数学の系譜11 ガロア理論を読む [2012/03/31(土) 22:58:17.97 ]
>>266

斎藤毅さんの、これも面白いね
www.ms.u-tokyo.ac.jp/~t-saito/jd/gr.pdf
グロタンディーク [さいとう たけし]

グロタンディークほど、多くの伝説が語られた20 世紀の数学者はいないだろう。しかしここで書きたいのは、私にとってのグロタンディークである。
それは、今では遠い学生のころ、来る日も来る日も読みふけった、Tohoku、EGA、SGA の著者である。

全13 章の計画が、第4 章までで中断されたままである、というのも有名な話だが、そこまででも計1,800 ページという膨大なものである。IHES(パリ郊外の高等科学研究所)の青表紙の雑誌で1960年から1967 年まで毎年1 冊ずつ出版されたものだが、
1 章だけは、大幅に改訂されたものがシュプリンガーから本となってでている。
そのはじめのところをみると、数学の対象とは構造のついた集合であるという、ブルバキの数学観が、時代遅れになっていることがわかる。
グロタンディークにとっては、数学の対象とは、表現可能な関手を表現する圏の対象である。
たとえば、ブルバキ流にいえば、実数体とは、実数全体の集合に、加法と乗法という代数的な演算を与え、さらに位相をいれたものである。
EGA では、スキームX とY のS 上のファイバー積とは、S上のスキームの圏の対象で、X が表現する関手とYが表現する関手の積関手を表現するもの、というのが定義である。

数学の対象は、それが何からなりたっているかではなく、どういう役割を果たしているかが重要だ、という視点の転換がそこにある。
アファイン・スキームも、局所環つき空間として構成されるのだが、その存在理由は、大域切断という関手の随伴関手であるところにある。対象それ自体よりも、対象から対象への射のほうが重要だ、といいかえてもよい。
この視点にたつグロタンディークにとって、スキームの点とは、位相空間としての点ではない。
それは、ほかのスキームからの射である。これは、シュヴァルツの超関数が、試験関数の空間の双対として定義されることを思い起こさせる。
(つづく)






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<467KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef