[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 2chのread.cgiへ]
Update time : 04/16 01:22 / Filesize : 219 KB / Number-of Response : 883
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

分からない問題はここに書いてね367



413 名前:132人目の素数さん mailto:sage [2012/03/29(木) 03:30:58.84 ]
>>411
簡略化して、関数f(x) 0<x<2πの近似を考える

f(x)を F_N(x) = Σ[n=-N,N] a_n exp(inx) で近似するとき
残差F_N(x)-f(x)の重みつき積分∫[0,2π]{F_N(x)-f(x)}exp(-ikx)dx
を0にすることを考えれば
∫[0,2π]{Σ[n=-N,N] a_n exp(inx)-f(x)}exp(-ikx)dx=0 k=0,±1,..,±N
すなわち
a_k = (1/(2π))∫[0,2π]f(x)exp(-ikx)dx k=0,±1,..,±N
となり、係数a_kが得られる。

これが俗に言うフーリエ級数展開で、fが連続ならば一様に
F_N(x)→f(x) (N→∞) であることが証明されている。

これがイメージで、後はfを微分方程式の境界値問題に置き換えるだけ






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧]( ´∀`)<219KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef