[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 2chのread.cgiへ]
Update time : 12/19 12:27 / Filesize : 470 KB / Number-of Response : 686
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

現代数学の系譜11 ガロア理論を読む



334 名前:現代数学の系譜11 ガロア理論を読む [2012/02/22(水) 21:28:00.83 ]
>>333
乙、ありがとう

>>331
>つまり、今までは補助方程式の根を別々に添加していたわけだけど、同時に加えるということ。
>俺の挙げた例でいうと、K(r1), K(r2), K(r3) ではなく K(r1, r2, r3) でF(x)を見たらどう分解されるか?

誘導ありがとう
1.まず、K(r1)のとき、>>326でr1=(α-β)^2、F(x)=(x-V1)(x-V2)(x-V3)(x-V4)(x-V5)(x-V6)、f1(x,r1)=(x−V1)(x−V4)
  までは、すでに記した通り。
  で、F(x)=f1(x,r1)(x-V2)(x-V3)(x-V5)(x-V6)=f1(x,r1)g(X) 但しg(X)=(x-V2)(x-V3)(x-V5)(x-V6)として、g(X)がK(r1)に属するかだが
  ラグランジュの定理でいえるね。
  g(X)=F(x)/f1(x,r1)と書けて、F(x)とf1(x,r1)とも(α,β)(=α,βの互換)で変わらないから、g(X)も変わらない。だから、その係数はr1の有理式で、g(X)がK(r1)に属する
  だがそこまでで、g(X)=g(x,r1)とは書けるが、これ以上分解はできない
2.で、K(r1, r2, r3) は、r1, r2, r3を全て含む拡大体で、>>326 F(x)=f1(x,r1)xf2(x,r2)xf3(x,r3)で
  f1(x,r1)=(x−V1)(x−V4),f2(x,r2)=(x−V2)(x−V5),f3(x,r3)=(x−V3)(x−V6)となるが
  f1(x,r1)、f2(x,r2)、f3(x,r3)は全て、K(r1, r2, r3) に属するので、F(x)=f1(x,r1)xf2(x,r2)xf3(x,r3) (2次式)までの分解ができる
3.では、それ以上(1次式へ)の分解ができるか? これはできない
  K(r1, r2, r3) の元は、例えば(α,β)(=α,βの互換)で変わらないが、V1〜V6は、全て(α,β)で変わるから、K(r1, r2, r3) の元ではない。だから、1次式への分解はできないと






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<470KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef