- 60 名前:132人目の素数さん mailto:sage [2011/11/01(火) 15:02:05.21 ]
- 箱がある。箱には、「◇□」というものと、「□☆」というものがたくさん入っている(※)。
箱の中から一つの「??」を取り出し、「??」の中からさらに一つを選んだら、 「□」がでてきた。「??」の中のもう一方が、「◇」である確率と、「☆」である確率は? こんな問題、計算できるはずがない。出来るはずのない問題に対し、あれこれ言っているのが2封筒問題だ。 例えば、(※)が ・箱には、50個の「◇□」というものと、50個の「□☆」というものが入っている。 ・箱には、99個の「◇□」というものと、1個の「□☆」というものが入っている。 ・箱には、1個の「◇□」というものと、99個の「□☆」というものが入っている。 の様になっていれば、きちんと計算できる。そして、それぞれに対応して、☆の確率は50%、1%、99%となる。 これが判って初めて、交換してもしなくても同じか、しない方がよいか、した方がよいか決定できる。 逆にこの様なデータがなければ、「判らない」としか言いようがない。 「交換した方が常に得?」←勝手な思いこみを根拠としている間違った判断以外の何物でもない。
|

|