- 842 名前:132人目の素数さん mailto:sage [2011/12/23(金) 13:34:13.89 ]
- >>824
lim[n→∞] { (n+1)^(n+1) / n^n - n^n / (n-1)^(n-1) } = lim[n→∞] (1 + 1/(n-1))^(n-1) * { (2 + 2/n)*(1 - 1/(n^2))^(n-1) - 1/n Σ[k=1 to n] (1 - 1/(n^2))^(k-1) } = e(2*1-1) = e (1 - 1/(n^2))^(n-1) = 1/{ (1 + 1/(n^2-1))^(n^2-1) }^(1/(n+1)) → 1/e^0 =1 1/n Σ[k=1 to n] (1 - 1/(n^2))^(k-1) → 1 になるのは、はさみうちナリよキテレツ! // / /__ / / lim \ パカッ! /.∩|:::: \ ./ | / | ||::::(● (●.|_ 呼んだ? //| |ヽ::::....ワ....ノ/ " ̄ ̄ ̄ ̄ ̄ ̄"
|

|