[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 2chのread.cgiへ]
Update time : 02/02 06:10 / Filesize : 288 KB / Number-of Response : 917
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

不等式への招待 第5章



775 名前:132人目の素数さん mailto:sage [2011/11/30(水) 23:51:09.00 ]
>>774

(64_1)
(1) sgn(a),   x = |a|・tanθ とおく。
(2) 部分分数に分けて
 f(x)f(t-x) = (1/2π)f(t/2){(1/2 + x/t)f(x) + (1/2 + (t-x)/t)f(t-x)}
 xf(x) は奇関数だから、積分すれば0.
 (t-x)f(t-x) も同様。
 ∴ (1/2π)f(t/2)∫(-∞,∞) {f(x) + f(t-x)}/2 dx = (1/2π)f(t/2),

66-5
問題1.
 (左辺) - (右辺) = (4/5)(x-y)^2 + (4/5)(x+y)(z-x-y) + (z-x-y)^2 ≧0,
 z = x+y+Z (Z≧0) を与式に代入する。

問題2.
 (与式) > ∫[0,1] (x^2)e^(-x) dx
   = [ -(x^2 +2x +2)e^(-x) ](x=0,1)
   = 2 - (5/e) = 0.160603

 (与式) < ∫[0,1] (x^2)・e^(-x^3) dx
   = [ -(1/3)e^(-x^3) ](x=0,1)
   = (1/3)(1 - 1/e) = 0.210707
(真値は (1/4)(√π)erf(1) - 1/(2e) = 0.189472345820492...)

67-2
(1) f(x) = (x+1/x)^2 は下に凸だから
 (a + 1/a)^2 + (b + 1/b)^2 + (c + 1/c)^2
  = f(a) + f(b) + f(c)
  ≧ 3f((a+b+c)/3)   (← 下に凸)
  = 3f(1/3) = 3(10/3)^2 = 100/3,






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧]( ´∀`)<288KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef