- 1 名前:不等式ヲタ mailto:sage [2010/10/24(日) 23:56:56 ]
- ある人は蝶を集め、ある人は切手を収集し、ある人は不等式を集める…
___ ----- 参考文献〔3〕 P.65 ----- |┃三 ./ ≧ \ |┃ |:::: \ ./ | |┃ ≡|::::: (● (● | 不等式と聞ゐちゃぁ ____.|ミ\_ヽ::::... .ワ......ノ 黙っちゃゐられねゑ… |┃=__ \ ハァハァ |┃ ≡ ) 人 \ ガラッ 過去スレ ・不等式スレッド (Part1) science3.2ch.net/test/read.cgi/math/1072510082/ ・不等式への招待 第2章 science6.2ch.net/test/read.cgi/math/1105911616/ ・不等式への招待 第3章 science6.2ch.net/test/read.cgi/math/1179000000/ ・不等式への招待 第4章 kamome.2ch.net/test/read.cgi/math/1245060000/ 過去スレのミラー置き場:cid-d357afbb34f5b26f.skydrive.live.com/browse.aspx/.Public/ まとめWiki wiki.livedoor.jp/loveinequality/ 姉妹サイト(?) Yahoo! 掲示板 「出題 不等式」 messages.yahoo.co.jp/bbs?.mm=GN&action=l&board=1835554&tid=bdpbja1jiteybc0a1k&sid=1835554&mid=10000
- 769 名前:132人目の素数さん [2011/11/26(土) 20:43:16.45 ]
- ついでにこういう定理をご存知ですか。
定理1. 4次斉次多項式f(a,b,c)について、 任意の実数a,b,cに対しf(a,b,c)≧0が成り立つための必要十分条件は、 f(1,0,0)≧0かつf(x,1,1)≧0 (∀x∈R)である。 定理2. 3〜5次斉次多項式f(a,b,c)について、 任意のa,b,c≧0に対しf(a,b,c)≧0が成り立つための必要十分条件は、 f(x,1,0)≧0かつf(x,1,1)≧0 (∀x≧0)である。
- 770 名前:132人目の素数さん [2011/11/26(土) 20:45:04.43 ]
- すいません。直前の訂正です。
定理1. 4次斉次対称多項式f(a,b,c)について、 任意の実数a,b,cに対しf(a,b,c)≧0が成り立つための必要十分条件は、 f(1,0,0)≧0かつf(x,1,1)≧0 (∀x∈R)である。 定理2. 3〜5次斉次対称多項式f(a,b,c)について、 任意のa,b,c≧0に対しf(a,b,c)≧0が成り立つための必要十分条件は、 f(x,1,0)≧0かつf(x,1,1)≧0 (∀x≧0)である。
|

|