- 6 名前:132人目の素数さん mailto:sage [2010/10/25(月) 04:04:00 ]
- >>5 読めぬぅ…
〔M1852.〕 f∈C^1([0,1]) で f(0) = f(1) = -1/6 とする。次を示せ。 ∫[0,1] {f '(x)}^2 dx ≧ 2∫[0,1] f(x)dx + (1/4), 等号は f(x) = (1/2)x(1-x) - 1/6. (Cezar Lupu e Tudorel Lupu (Romania)) 〔C934.〕 n個の辺からなる多角形を考え、その半周をsとおく。次を示せ。 農[1≦i<j≦n] (a_i)^2・(a_j)^2/{(a_i)^2 + (a_j)^2} ≦ {(n-1)/(n-2)^2}納k=1,n] (s-a_k)^2, ここに、a_1, a_2, ……, a_n はn個の辺の長さ。(Jose Luis Diaz-Barrero (Spagna)) 〔C932.〕 f:[0,1]→R は連続函数で ∫[0,1] {f(x)}^3 dx =0 とする。次を示せ。 ∫[0,1] {f(x)}^4 dx ≧ (27/4){∫[0,1] f(x)dx}^4, (Cezar Lupu e Tudorel Lupu (Romania)) www.mat.uniroma2.it/~tauraso/GRA20/main.html
|

|