[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 2chのread.cgiへ]
Update time : 02/02 06:10 / Filesize : 288 KB / Number-of Response : 917
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

不等式への招待 第5章



6 名前:132人目の素数さん mailto:sage [2010/10/25(月) 04:04:00 ]
>>5 読めぬぅ…

〔M1852.〕
f∈C^1([0,1]) で f(0) = f(1) = -1/6 とする。次を示せ。
 ∫[0,1] {f '(x)}^2 dx ≧ 2∫[0,1] f(x)dx + (1/4),
等号は f(x) = (1/2)x(1-x) - 1/6. (Cezar Lupu e Tudorel Lupu (Romania))


〔C934.〕
n個の辺からなる多角形を考え、その半周をsとおく。次を示せ。
 農[1≦i<j≦n] (a_i)^2・(a_j)^2/{(a_i)^2 + (a_j)^2} ≦ {(n-1)/(n-2)^2}納k=1,n] (s-a_k)^2,
ここに、a_1, a_2, ……, a_n はn個の辺の長さ。(Jose Luis Diaz-Barrero (Spagna))


〔C932.〕
f:[0,1]→R は連続函数で ∫[0,1] {f(x)}^3 dx =0 とする。次を示せ。
 ∫[0,1] {f(x)}^4 dx ≧ (27/4){∫[0,1] f(x)dx}^4,
            (Cezar Lupu e Tudorel Lupu (Romania))

www.mat.uniroma2.it/~tauraso/GRA20/main.html






[ 続きを読む ] / [ 携帯版 ]

全部読む 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧]( ´∀`)<288KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef