- 492 名前:132人目の素数さん mailto:sage [2011/08/06(土) 22:05:29.24 ]
- >>477
[B4371.] 1/{sin(π/14)}^2 + 1/{sin(3π/14)}^2 + 1/{cos(5π/7)}^2 = 24, を示せ。 (略解) (左辺) = 1/{cos(3π/7)}^2 + 1/{cos(2π/7)}^2 + 1/{cos(π/7)}^2 = 1/{cos(4π/7)}^2 + 1/{cos(2π/7)}^2 + 1/{cos(6π/7)}^2 = Σ[k=1,3] 1/{cos(2kπ/7)}^2, {1 - T_7(x)}/(1-x) = 1 +7x -56x^3 +112x^5 -64x^7 = (1-x)(1 +4x -4x^2 -8x^3)^2, cos(2kπ/7) (k=1,2,3) は 1 +4x -4x^2 -8x^3 = 0 の根。 1/cos(2kπ/7) (k=1,2,3) は y^3 +4y^2 -4y -8 = 0 の根。 Σ[k=1,2,3] 1/cos(2kπ/7) = -4, Σ[k<L] 1/{cos(2kπ/7)cos(2Lπ/7)} = -4, よって Σ[k=1,3] 1/{cos(2kπ/7)}^2 = 4^2 -(-4)*2 = 24,
|

|