- 25 名前:132人目の素数さん [2010/11/08(月) 18:20:11 ]
- >>23
初等的証明 f(0)=0 より f(x)=∫_[0,x] f'(t) dt と書ける. Schwarzの不等式とHo"lderの不等式より, |f(x)|≦ ∫_[0,x] |f'(t) | dt ≦ { ∫_[0,x] 1^2 dt }^{1/2}・{∫_[0,x] |f' (t)|^2 dt}^{1/2}. 両辺自乗すれば, |f(x)|^2 ≦ x ∫_[0,x] |f' (t)|^2 dt. よって,x について 0 →1まで積分すれば, ∫_[0,1] |f(x)|^2 dx ≦ ∫_[0,1] x { ∫_[0,x] |f' (t)|^2 dt } dx. ここで、右辺を部分積分すれば, 右辺 = [ x^2/2・∫_[0,x] |f' (t)|^2 dt ]_[x=0]^1 - ∫_[0,1] x^2/2・|f' (x)|^2 dx = 1/2 ・∫_[0,1] |f' (t)|^2 dt - - ∫_[0,1] x^2/2・|f' (x)|^2 dx = 1/2 ・∫_[0,1] (1-x^2) |f' (x)|^2 dx ≦1/2 ・∫_[0,1] |f' (x)|^2 dx ≦∫_[0,1] |f' (x)|^2 dx よって、 ∫_[0,1] |f(x)|^2 dx ≦ ∫_[0,1] |f' (x)|^2 dx が証明できた。
|
|