- 245 名前:243 mailto:sage [2011/03/28(月) 10:52:27.44 ]
- では、引き継いで頑張ってみます
3(x^2 + y^2 + z^2) - (x+y+z)^2 = (x-y)^2 + (y-z)^2 + (z-x)^2 ≧ 0 ∴(x^2 + y^2 + z^2) ≧ (1/3)*(x+y+z)^2 z/(x+y) + x/(y+z) + y/(z+x) = z^2/(zx+yz) + x^2/(xy+zx) + y^2/(yz+xy) ≧ z^2/(xy+yz+zx) + x^2/(xy+yz+zx) + y^2/(xy+yz+zx) = (x^2 + y^2 + z^2) ≧ (1/3)*(x+y+z)^2 >>242の4行目から = {1/(x+y+z)}*{z/(x+y) + x/(y+z) + y/(z+x)} + 2/(x+y+z) ≧ (x+y+z)/3 + 2/(x+y+z) ≧ 2√(2/3) うむ、失敗したようじゃ…
|

|