- 241 名前:132人目の素数さん mailto:sage [2011/03/27(日) 23:30:24.83 ]
- >>239-240
附帯条件から考えて、a→cotα, b→cotβ, c→cotγ と置いてみる・・・ α+β+γ = π より, (左辺) = 1/(cotα+cotβ) + 1/(cotβ+cotγ) + 1/(cotγ+cotα) - 1/(cotα+cotβ+cotγ) = (sinα・sinβ)/sin(α+β) + (sinβ・sinγ)/sin(β+γ) + (sinγ・sinα)/sin(γ+α) - (sinα・sinβ・sinγ)/(1-cosα・cosβ・cosγ) = (sinα・sinβ)/sinγ + (sinβ・sinγ)/sinα + (sinγ・sinα)/sinβ -2(sinα・sinβ・sinγ)/[(sinα)^2 + (sinβ)^2 + (cosγ)^2] = (sinα・sinβ・sinγ){(1/sinα)^2 + (1/sinβ)^2 + (1/sinγ)^2 - 2/[(sinα)^2 + (sinβ)^2 + (cosγ)^2]} = 2勍{(1/a')^2 + (1/b')^2 + (1/c')^2 -2/[(a')^2 + (b')^2 + (c')^2]} = ・・・・ ここに、 a'=2R・sinα, b'=2R・sinβ, c'=2R・sinγ, = 2R^2・sinα・sinβ・sinγ, まだ解けぬるぽ〜
|

|