[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 2chのread.cgiへ]
Update time : 07/21 11:55 / Filesize : 197 KB / Number-of Response : 563
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

不等式への招待 第4章



528 名前:132人目の素数さん mailto:sage [2009/10/09(金) 11:46:34 ]
>>502 (4)
 β^α - α^β、β^(1/β) - α^(1/α) 、(1/β)log(β) - (1/α)log(α) は符号が同じ。

便宜上 (2) を先に解く。
 0<x,α=ex,β=e/x のとき
 (1/α)log(α) = (1/ex){1 + log(x)} = (1/e){1 + ∫[x,1] log(t)/(t^2) dt,
 (1/β)log(β) = (x/e) {1 - log(x)} = (1/e){1 + ∫[x,1] log(t) dt,
辺々引いて
 (1/β)log(β) - (1/α)log(α) = (1/e)∫[x,1] (1 - 1/t^2)log(t) dt,
ここで被積分函数は非負 (1 - 1/t^2)log(t) ≧ 0 だから、
 (1/β)log(β) - (1/α)log(α) の符号は 1-x の符号と一致する。(終)

〔系〕
0 < α < e < β, αβ < e^2 のとき
 (1/β)log(β) - (1/α)log(α) は β-α と同符号。

(1) αβ = (e-x)(e+x) = e^2 - x^2 < e^2 だから、(系) により成立する。






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧]( ´∀`)<197KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef