[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 2chのread.cgiへ]
Update time : 07/21 11:55 / Filesize : 197 KB / Number-of Response : 563
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

不等式への招待 第4章



507 名前:132人目の素数さん mailto:sage [2009/10/01(木) 19:00:08 ]
>>504-505 さんの解答をほとんど同じですが,より平易に書いて見ました.
文字は>>504-505 さんのものを使用します.

x,a∈[0,1],a を固定し x≠a とする.

{f(x)−f(a)}/(x−a)=f’(c) となる c が x と a の間に存在
|f’(c)|≦( |f(x)|+|f(a)| )/|x−a|≦2A/|x−a|...@

f’(c)−f’(a)=∫[a,c]f”(t)dt より
|f’(a)|≦|f’(c)|+|∫[a,c]f”(t)dt|≦|f’(c)|+|c−a| B≦|f’(c)|+B|x−a| ...A

@,A より |f’(a)|≦2A/|x−a|+B|x−a| ...B

( i ) 0≦a≦1/2 のとき
x=a+(1/2)√{A/(A+B)} とおくと 0≦x≦1 で B より
|f’(a)|≦4)√{A(A+B)}+(1/2)B√{A/(A+B)} ≦(4+1/2)√{A(A+B)}
( ii ) 1/2≦a≦1 のとき
( i ) とまったく同様









[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧]( ´∀`)<197KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef