[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 2chのread.cgiへ]
Update time : 07/21 11:55 / Filesize : 197 KB / Number-of Response : 563
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

不等式への招待 第4章



391 名前:132人目の素数さん mailto:sage [2009/08/13(木) 19:03:57 ]
>>385

n≧2 のとき
 1/n ≦ 3/{2(n+1)},
∴ Σ[s=3,∞) 1/(n^s) = 1/{(n^3)[1-(1/n)]}
 = 1/{(n^2)(n-1)}
 ≦ 3/{2(n-1)n(n+1)}
 = (3/4){1/((n-1)n) - 1/(n(n+1))},
よって
 ζ(s) -1 = Σ[n=2,∞) 1/(n^s)
 Σ[s=3,∞) {ζ(s)-1} = Σ[s=3,∞) Σ[n=2,∞) 1/(n^s)
 = Σ[n=2,∞) Σ[s=3,∞) 1/(n^s)
 ≦ (3/4)Σ[n=2,∞) {1/((n-1)n) - 1/(n(n+1))}
 = 3/8,

蛇足だが、
 ζ(3) - 1 = 0.20205690315732・・・・
 ζ(4) - 1 = (π^4)/90 - 1, 
 ζ(6) - 1 = (π^6)/945 - 1,
 ・・・・
を使うと
 (左辺) = 0.3550659331455・・・ < 3/8,






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧]( ´∀`)<197KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef