- 24 名前:132人目の素数さん mailto:sage [2009/06/21(日) 02:29:17 ]
- >>6 (上), >>8
n=2m (偶数)のとき cos(x)^2 - (1/2) = ξ, とおく。|ξ| ≦ 1/2, 与式は (与式) = (1/2 - ξ)^m + (1/2 + ξ)^m = 2納k=0,[m/2]] C[m,2k] (1/2)^(m-2k) ξ^(2m), ξ=±1/2 のとき最大値 1, ξ=0 のとき最小値 (1/2)^(m-1), nが奇数のとき、与式を g(x) とおくと, g '(x) = n・sin(x)cos(x){sin(x)^(n-2) - cos(x)^(n-2)}, 最大値 g(0) = g(π/2) = 1, 最小値 g(π) = g(3π/2) = -1, なお、 極小値 g(π/2) = (1/2)^(n/2 -1), 極大値 g(3π/2) = -(1/2)^(n/2 -1),
|

|