- 22 名前:132人目の素数さん mailto:sage [2009/06/20(土) 14:32:02 ]
- >>19
π/2 = p とおくと、相乗・相加平均より (右辺) < 納k=1,n-1] (2/3k){log(kp) + log((k+1)p)} = 納k=1,n-1] (2/3k){log(k) + log(k+1) + 2log(p)}, (左辺) = log(n)log(np^2) = log(n){log(n) + 2log(p)} = log(n)^2 + 2log(p)・log(n), したがって、 納k=1,n-1] (2/3k){log(k) + log(k+1)} < log(n)^2, ・・・・・ (I) 納k=1,n-1] (2/3k) < log(n), ・・・・・ (II) を示せば十分。 (I) 1/(k+1) < -log(k/(k+1)) = log((k+1)/k) = log(k+1) - log(k), より 納k=1,n-1] (2/3k){log(k+1) + log(k)} < (2/3)log(2) + 納k=2,n-1] (1/(k+1)){log(k+1) + log(k)} = (2/3)log(2) + 納k=2,n-1] {log(k+1) - log(k)}{log(k+1) + log(k)} = (2/3)log(2) + 納k=2,n-1] {log(k+1)^2 - log(k)^2} = (2/3)log(2) + log(n)^2 - log(2)^2 = log(n)^2 -log(2){log(2) -2/3} < log(n)^2, {log(2) = 0.693147・・・ >2/3} (II) ・n=2 のときは 明らか。 ・n>2 のとき、(I) と同様に 納k=1,n-1] (2/3k) = 2/3 + 納k=2,n-1] (2/3k) < 2/3 + 納k=2,n-1] {log(k+1)-log(k)} = 2/3 + log(n) - log(2) < log(n), {log(2) = 0.693147・・・ >2/3} または、 y=1/x が下に凸だから 納k=1,n-1] (1/k) < ∫[1/2, n -1/2] 1/x dx = log(2n-1) < (3/2)log(n),
|

|