[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 2chのread.cgiへ]
Update time : 07/21 11:55 / Filesize : 197 KB / Number-of Response : 563
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

不等式への招待 第4章



12 名前:132人目の素数さん [2009/06/18(木) 04:07:20 ]
No1
a,b,cは実数で,a≧0,b≧0とする.
  p(x)=ax^2+bx+c
  q(x)=cx^2+bx+a
とおく.-1≦x≦1をみたすすべてのxに対して|p(x)|≦1が成り立つとき,
-1≦x≦1をみたすすべてのxに対して|q(x)|≦2が成り立つことを示せ.

No2
nを正の整数,aを実数とする.すべての整数mに対して,
  m^2-(a-1)m+(an^2)/(2n+1)>0
が成り立つようなaの範囲をnを用いて表せ.

No3
 実数a,b,c,x,y,z,pが次の4条件をみたしている.
  a^2-b^2-c^2>0
  ax+by+cz=p
  ap<0
  x<0
このとき,x^2-y^2-z^2の符号を調べよ.

No4
 a,b,cは実数とする.また,xについての関数f(x)を以下のように定める.
 f(x)=x^3-3ax^2+(a^2-a+b)x+c
a≦p,a≦q,a≦rをみたす任意の実数p,q,rに対して,
 {f(p)+f(q)+f(r)}/3≧f((p+q+r)/3)
が成り立つことを示せ.

No5
 a,bは実数とする.xについての関数f(x)を
  f(x)=|x^3+ax+b|
と定める.|x|≦1におけるf(x)の最大値をM(a,b)として,M(a,b)の最小値を求めよ.






[ 続きを読む ] / [ 携帯版 ]

全部読む 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧]( ´∀`)<197KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef