- 812 名前:811 mailto:sage [2009/10/06(火) 00:58:22 ]
- 訂正.
f(x) がx=0 を含む開区間で連続で,その区間内で x≠0 のとき f’(x) が存在するとき, 次の命題が真であれば証明し,偽であれば反例を示せ. (1) 極限値 lim[x→0]f’(x) が存在 ⇒ f’(0) が存在 (2) (1) の逆命題 (3) 極限 lim[x→0]f’(x) が存在 ⇒ f’(0) が存在 (4) (3) の逆命題 ただし, 極限 lim[x→0]f’(x) が存在 ⇔ 極限値 lim[x→0]f’(x) が存在,または lim[x→0]f’(x)=∞,または lim[x→0]f’(x)=−∞ とする.
|

|