- 751 名前:132人目の素数さん mailto:sage [2009/09/26(土) 03:45:29 ]
- >>746
(1) tan(x)^n・{tan(x)^2 + 1} = tan(x)^n / cos(x)^2 = tan(x)^n {tan(x)} ', ∴ (与式) = ∫[0,π/4] tan(x)^n・{tan(x)} 'dx = [ (1/(n+1))tan(x)^(n+1) ](x=0〜π/4) = 1/(n+1), (2) (右辺) = 4Σ[k=1,n](-1)^(k+1)/(2k-1) = 4Σ[k=1,n] [ (-1)^(k+1)/(2k-1) x^(2k-1) ](x=0,1) = 4Σ[k=1,n] ∫[0,1] (-1)^(k+1) x^(2k-2) dx = 4∫[0,1] Σ[k=1,n] (-1)^(k+1) x^(2k-2) dx = 4∫[0,1] {1 + (-1)^(n-1)・x^(2n)}/(1+x^2) dx → 4∫[0,1] 1/(1+x^2) dx (n→∞) = 4[ arctan(x) ](x=0〜1) = π, (3) Σ[k=1,n] (-1)^(k+1)・(1/k) = - Σ[k=1,n] [ (-1)^(k+1)・(1/k)x^k ](x=0,1) = Σ[k=1,n] ∫[0,1] (-1)^(k+1)・x^(k-1) dx = ∫[0,1] Σ[k=1,n] (-1)^(k+1)・x^(k-1) dx = ∫[0,1] {1 - (-x)^n}/(1+x) dx → ∫[0,1] 1/(1+x) dx = [ log(1+x) ](x=0〜1) = log(2), ∴ lim(n→∞) e^{Σ[k=1,n] (-1)^(k+1) 1/k} = 2,
|

|