[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 2chのread.cgiへ]
Update time : 12/18 21:17 / Filesize : 256 KB / Number-of Response : 960
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

★東大入試作問者になったつもりのスレ★ 第十七問



212 名前:132人目の素数さん [2009/08/01(土) 16:17:48 ]
S[k]=Σ[i=0、k-1]3^i
L(p)=(2^Lがpを割りきるような最大のL)
とする。
以下証明の準備
@L(p*q)=L(p)+L(q)Apが偶数の時
3^p +1=9^(p/2) +1
≡2(mod8)
∴L(3^p +1)=1
Bpが奇数の時
3^p +1=9^{(p-1)/2}*3 +1
≡4(mod8)
∴L(3^p +1)=2
で、こっからが本題。
S[2k]=S[k](3^k +1)
より
L(S[2k])=L(S[k])+L(3^k +1)
∴L(S[2k])=L(S[k])+1(kが偶数)
L(S[2k])=L(S[k])+2(kが奇数)
従ってn=2^l*p(pは奇数、l≧1)の時
L(S[n])=l+1+L(S[p])
S[p]=Σ[i=0、p-1]3^i
は、奇数個(p個)の奇数(各3^i)の和なので、奇数
∴L(S[p])=0
以上より
L(S[n])=0(nが奇数)
L(S[n])=l+1
∴L(3^m -1)=L(2)+L(S[m])
=1(mが奇数)
=l+2(mが偶数)






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧]( ´∀`)<256KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef