- 739 名前:132人目の素数さん [2009/04/20(月) 23:47:40 ]
- >>737
n!=m^2について pを素数として p!の素因数のうち最大の素数はpである。 p^2までにpより大きい素数が含まれていることが示せれば最大の素数の次数が1であり、平方数にならないことが示される。 またこの時pの次に大きい素数をqとして、p≦n<qである自然数nについても最大の素数はpである。…@ p=2ならp^2=4までに3がある 同様に 3(9)→7 7(49)→47 47(47^2)→101 (5は7,11〜43は47,53〜97は101が対応する) よってp!が平方数になることはない。(1<p<100) また、これと@より1<n<100についても示される。
|

|