- 711 名前:132人目の素数さん mailto:sage [2009/04/09(木) 18:26:33 ]
- >>706
φ=(1+sqrt(5))/2 とすると、この数列(フィボナッチ数列の一般項)は a(n)={φ^n-(-φ)^(-n)}/sqrt(5) である。 nが大きいとき(-φ)^(-n)→0だから、まずb(n)=φ^n/sqrt(5)の桁数を評価する。 底の10は省略。 1.6<φ<1.62だから、 4log2-1<logφ<log2+4log3-2 0.2040<logφ<0.2099 log b(100)=100logφ-(1-log2)/2だから、 20.0505<log b(100)<20.64055 よって、b(100)は整数部分が21桁の数である。 一方、 a(100)=b(100)-(1/sqrt(5))(1/φ)^100>b(100)-1 であるが、 10^0.0505 >2^(1/6)>1.1 (∵0.0505*6=0.303>log2、1.1^6=1.771561) だからb(100)>1.1*10^20であり、高々1を引いても桁数は下がらない。 ∴ a(100)は21桁の整数 (答)
|

|