- 696 名前:132人目の素数さん mailto:sage [2009/03/31(火) 21:46:55 ]
- 一応できたつもりだが、何とも泥臭い(^q^)
とりあえず前半。合ってるかな? (a+bi)^nが実数になるようなa,b∈Z,n∈Nを全て求める。 先に結論を書くと、 nが偶数のとき:a=±bまたはa=0またはb=0 nが奇数のとき:a=0またはb=0 となる。 STEP1:nが奇数のときにa=0またはb=0となることは後で証明することにし、 今はこれを認めて、nが偶数の場合のa,bを求める。 nが偶数なのにa≠±bかつa≠0かつb≠0であるようなa,bがあったとする。 n=2mと表せば、(a+bi)^n=(a^2−b^2+2abi)^mとなる。ここで、 A=a^2−b^2, B=2ab とおけば、A,Bもまた「A≠±BかつA≠0かつB≠0」を 満たす。実際、A≠0かつB≠0は明らかである。A≠±Bの方は、 A= B ⇔ a^2−b^2= 2ab ⇔ (a−b)^2=2b^2 ⇔ a−b=±b√2 ⇔ a−b=0かつb=0 矛盾 A=-B ⇔ a^2−b^2=-2ab ⇔ (a+b)^2=2b^2 ⇔ a+b=±b√2 ⇔ a+b=0かつb=0 矛盾 より、成立。 以上より、(a+bi)^n=(a^2−b^2+2abi)^m=(A+Bi)^mについて、mは奇数としてよい。 なぜなら、もしmが偶数のときは、m=2m',A'=A-2−B^2,B'=2ABなどと置けば 上の議論を繰り返すことができ、いずれ奇数に辿り着くからである。 そして、奇数のときの解はA=0またはB=0に限られるのだから、これは矛盾する。
|

|