[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 2chのread.cgiへ]
Update time : 05/09 11:13 / Filesize : 189 KB / Number-of Response : 741
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

★東大入試作問者になったつもりのスレ★ 第十六問



39 名前:132人目の素数さん mailto:sage [2008/09/12(金) 00:50:04 ]
Fn(x)=納k=1,n] x^(k-1) とする。F5^(n-1)(x)≠0のとき、
F5^n(x)=0の解をそれぞれ2・5^(n-1)乗したものの総和を求めよ。
ただし重解の有無についての証明は無視してよく、N重解はN個の解として扱うものとする。


はじめ、持ち点を1とする。n個中1個が当たりのくじ引きを引き、当たりなら持ち点を倍にして戻し、
はずれなら何もせず戻すという動作をn回繰り返し、試行後の持ち点の期待値をXとする。
また、上記のようにして、当たりの時にa倍していったときの期待値をX'とする。
n→∞としたとき、X'がXの倍以上になるための最小の自然数aを求めよ。


An=(2008^x)/{(k^a)x+k^b}^(k^c) とし、F(x)=A1*A2*A3*・・・*An とする。
lim[n→∞] F'(0)/F(0)・n^m =α が0<α<log2008 を満たすための、
整数a,b,cの関係式と実数mの値、またその時のαを求めよ。


正直小問つけたほうがいい気がするけど、その前に問題として成り立ってるかどうか怪しいのもあるから、
まぁまずお前らが解いてくれ。んで難易度調整とかしてみてくれ。






[ 続きを読む ] / [ 携帯版 ]

全部読む 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧]( ´∀`)<189KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef