- 1 名前:132人目の素数さん mailto:sage [2008/01/07(月) 20:54:04 ]
- 理系で数学が得意な高校生が25〜50分で
解ける問題を考えてうぷするスレ。 これ以上の難易度の問題はスレ違いとなります。 関連スレへどうぞ
- 558 名前:MASUDA ◆5cS5qOgH3M [2008/02/26(火) 02:44:29 ]
- 京都大学(理系・乙)
【1】(35点) 直線y=px+qが関数y=logxのグラフと共有点をもたないためにpとqが満たすべき必要十分条件を求めよ. 【2】(35点) 正四面体ABCDを考える.点Pは時刻0では頂点Aに位置し,1秒ごとにある頂点から他の3頂点のいずれかに,等しい確率で動くとする.このとき,時刻0から時刻nまでの間に,4頂点A,B,C,Dのすべてに点Pが現れる確率を求めよ.ただしnは1以上の整数とする. 【3】(30点) 空間の1点Oを通る4直線で,どの3直線も同一平面上にないようなものを考える.このとき,4直線のいずれともO以外の点で交わる平面で,4つの交点が平行四辺形の頂点になるようなものが存在することを示せ.
- 559 名前:MASUDA ◆5cS5qOgH3M [2008/02/26(火) 02:45:17 ]
- 【4】(30点)
定数aは実数であるとする.関数y=|x^2-2|とy=|2x^2+ax-1|のグラフの共有点はいくつあるか.aの値によって分類せよ. 【5】(35点) 次の式で与えられる底面の半径が2,高さが1の円柱Cを考える. C={(x,y,z)|x^2+y^2≦4,0≦z≦1} xy平面上の直線y=1を含み,xy平面と45゚の角をなす平面のうち,点(0,2,1)を通るものをHとする.円柱Cを平面Hで2つに分けるとき,点(0,2,0)を含む方の体積を求めよ. 【6】(35点) 地球上の北緯60゚東経135゚の地点をA,北緯60゚東経75゚の地点をBとする.AからBに向かう2種類の飛行経路R[1],R[2]を考える. R[1]は西に向かって同一緯度で飛ぶ経路とする.R[2]は地球の大円に沿った経路のうち飛行距離の短い方とする.R[1]に比べてR[2]は飛行距離が3%以上短くなることを示せ. ただし,地球は完全な球体であるとし,飛行機は高度0を飛ぶものとする.また必要があれば,この冊子の5ページと6ページの三角関数表を用いよ. 注:大円とは,球を球の中心を通る平面で切ったとき,その切り口にできる円のことである.
|

|