[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 2chのread.cgiへ]
Update time : 02/25 14:01 / Filesize : 307 KB / Number-of Response : 983
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

不等式への招待 第3章



795 名前:132人目の素数さん mailto:sage [2009/03/16(月) 00:22:04 ]
>746 から・・・

〔出題95〕
x, yを正の実数とし, x,yの調和平均, 相乗平均, 相加平均, 2乗平均をそれぞれH, G, A, Q とおく.
すなわち,
 H = 2xy/(x+y), G = √(xy), A = (x+y)/2, Q = √{(x^2+y^2)/2}
とおく.
(1) H ≦ G ≦ A ≦ Q を示せ.
(2) G-H ≦ Q-A ≦ A-G を示せ。

--------------------------------------------
H,G,A は等比数列だから
 (A+H)/2 ≧ √(AH) = G,
 G-H ≦ A-G,
また G^2, A^2, Q^2 は等差数列で、公差は
  = Q^2 - A^2 = A^2 - G^2 = (1/4)(x-y)^2 ≧ 0,
 (Q+A)(Q-A) = (A+G)(A-G)     ・・・・ (*)
よって
 G ≦ A ≦ Q,
 Q+A ≧ A+G,
これで (*) を割ると
 Q-A ≦ A-G,
あとは
 G-H ≦ Q-A,
を示せれば・・・
 G^2 - H^2 = (H/G)^2・ = (G/A)^2・ = (H/A)・,

www.casphy.com/bbs/test/read.cgi/highmath/1169210077/95, 100






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<307KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef