- 485 名前:132人目の素数さん mailto:sage [2008/09/06(土) 06:57:59 ]
- >>456,476
f(t) = exp{-1/(t^2)} とおく。 f^(k)(t) = {(2/t^3)^k - 3・2^(k-2)・k(k-1)/t^(3k-2) + ・・・・・ + (-1)^k (k-1)(k+6)(k+1)!/[12t^(k+4))] + (-1)^(k-1) (k+1)!/t^(k+2)} exp{-1/(t^2)} = {(2/t^2)^k - (3/2)k(k-1) (2/t^2)^(k-1) + ・・・・・・ + (-1)^k (k-1)(k+6)(k+1)!/(12t^4) + (-1)^(k-1) (k+1)!/t^2} (1/t^k) exp{-1/(t^2)} = P_k(1/t^2) (1/t^k) exp{-1/(t^2)}, ここに P_k はk次の多項式で P_k(x) = (2x)^k -(3/2)k(k-1) (2x)^(k-1) + ・・・・・・・・ + (-1)^k [(k-1)(k+6)(k+1)!/12] x^2 + (-1)^(k-1) (k+1)! x, ところで、 f^(k)(t) (t^k) exp{a/(t^2)} = P_k(1/t^2) exp{-(1-a)/(t^2)} = P_k(x) exp{-(1-a)x}, (a=4/81 or 4/9) これの絶対値が (2^k)(k!) 以下であることを示す。 〔補題〕 a<1, j>0 ならば (x^j)exp{-(1-a)x} ≦ {j/[(1-a)e]}^j, 等号成立は x=j/(1-a) のとき。
|

|