[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 2chのread.cgiへ]
Update time : 02/25 14:01 / Filesize : 307 KB / Number-of Response : 983
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

不等式への招待 第3章



160 名前:132人目の素数さん mailto:sage [2007/10/28(日) 20:46:19 ]
問題を投下した者です。ちょっとこのスレ的ではない解ですが…

ω=exp(2πi/3) を用いて問題の関数は
w(x,y,z)=|(yω-z)(zω-x)(xω-y)|^2
と表せる。そこで p=x+yω+zω^2 という変数を考えるとpは複素平面上で
1,ω,ω^2 を頂点とする三角形の内部または周上 (Tとする) を動く。ここで

p-1=(x+yω+zω^2)-(x+y+z)=(1-ω^2)(yω-z)
p-ω=(x+yω+zω^2)-(x+y+z)ω=(ω-1)(zω-x)
p-ω^2=(x+yω+zω^2)-(x+y+z)ω^2=(ω^2-ω)(xω-y)

であるから

w=(1/27)|p^3-1|^2

である。この式の形とTの形状から、pの動く範囲はTのうちの
2π/3≦arg(p)≦4π/3 に制限してもよいことがわかる。このとき
p^3の動く範囲(Dとする)を描いてみればわかるように、max(w)
を与えるpはTの周上のどこかになる。そこで
p = (-1+it√3)/2 (-1≦t≦1)と置いてwを計算してみると

p^3-1 = (3√3/8)(t^2-1)(√3+it)
|p^3-1|^2 = (27/64)(t^2-1)^2(3+t^2)
w = (1/64)(t^2-1)^2(3+t^2)

あとは u=t^2 (0≦u≦1) の3次関数の問題で、u=0で最大となる
ことがわかり、max(w)=3/64 である。最大を与えるpは p=-1/2
のときと p^3の位置が同じp、すなわち p=-1/2,-ω/2,-ω^2/2 である。







[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<307KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef