[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 2chのread.cgiへ]
Update time : 08/06 14:18 / Filesize : 315 KB / Number-of Response : 588
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

代数的整数論 005



94 名前:Kummer ◆g2BU0D6YN2 [2007/04/05(木) 17:29:03 ]
r ≧ 2 とし、
α = [k_0, . . . , k_(r-1), . . . ] が長さ r の純循環(>>92)とする。
したがって, k_0 ≧ 1 である。
>>93 より α = (p_(r-1)α + p_(r-2))/(q_(r-1)α + q_(r-2))
ここで、q_0 = 1 とする。
α(q_(r-1)α + q_(r-2) = p_(r-1)α + p_(r-2)
q_(r-1)α^2 + (q_(r-2) - p_(r-1))α - p_(r-2) = 0
よって α は2次の無理数である。

f(x) = q_(r-1)x^2 + (q_(r-2) - p_(r-1))x - p_(r-2) とおく。
f(0) = -p_(r-2) < 0
f(-1) = q_(r-1) - q_(r-2) + p_(r-1) - p_(r-2)

>>44 より
r ≧ 3 のとき
q_(r-1) = q_(r-2)k_(r-1) + q_(r-3)
q_(r-1) - q_(r-2) = (k_(r-1) - 1)q_(r-2) + q_(r-3) ≧ q_(r-3) > 0
r = 2 なら
q_(r-1) - q_(r-2) = q_1 - q_0 = k_1 - 1 ≧ 0

r ≧ 3 のとき
p_(r-1) = p_(r-2)k_(r-1) + p_(r-3)
p_(r-1) - p_(r-2) = (k_(r-1) - 1)p_(r-2) + p_(r-3) ≧ p_(r-3) > 0

r = 2 なら
p_(r-1) - p_(r-2) = p_1 - p_0
= k_0k_1 + 1 - k_0 ≧ (k_1 - 1)k_0 + 1 > 0

以上から f(-1) = q_(r-1) - q_(r-2) + p_(r-1) - p_(r-2) > 0
よって α の共役 β は -1 < β < 0 である。






[ 続きを読む ] / [ 携帯版 ]

全部読む 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<315KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef