[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 2chのread.cgiへ]
Update time : 08/06 14:18 / Filesize : 315 KB / Number-of Response : 588
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

代数的整数論 005



511 名前:Kummer ◆g2BU0D6YN2 [2007/06/27(水) 06:38:25 ]
有理整数の集合 Z から {±1} への写像ψ_1, ψ_2 を
r が偶数のとき ψ_1(r) = 0, ψ_2(r) = 0
r が奇数のとき
ψ_1(r) = (-1)^(r-1)/2
ψ_2(r) = (-1)^(r^2 - 1)/8
で定義する。

r ≡ s (mod 4) なら ψ_1(r) ≡ ψ_1(s) (mod 4)
r ≡ s (mod 8) なら ψ_2(r) ≡ ψ_2(s) (mod 8)
である。

過去スレ4の893より
a, b を奇数とすれば
(ab - 1)/2 ≡ (a - 1)/2 + (b - 1)/2 (mod 2)
よって
ψ_1(ab) = ψ_1(a)ψ_1(b)

過去スレ4の894より
a, b を奇数とすれば
(a^2b^2 - 1)/8 ≡ (a^2 - 1)/8 + (b^2 - 1)/8 (mod 2)
よって
ψ_2(ab) = ψ_2(a)ψ_2(b)






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<315KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef