- 511 名前:Kummer ◆g2BU0D6YN2 [2007/06/27(水) 06:38:25 ]
- 有理整数の集合 Z から {±1} への写像ψ_1, ψ_2 を
r が偶数のとき ψ_1(r) = 0, ψ_2(r) = 0 r が奇数のとき ψ_1(r) = (-1)^(r-1)/2 ψ_2(r) = (-1)^(r^2 - 1)/8 で定義する。 r ≡ s (mod 4) なら ψ_1(r) ≡ ψ_1(s) (mod 4) r ≡ s (mod 8) なら ψ_2(r) ≡ ψ_2(s) (mod 8) である。 過去スレ4の893より a, b を奇数とすれば (ab - 1)/2 ≡ (a - 1)/2 + (b - 1)/2 (mod 2) よって ψ_1(ab) = ψ_1(a)ψ_1(b) 過去スレ4の894より a, b を奇数とすれば (a^2b^2 - 1)/8 ≡ (a^2 - 1)/8 + (b^2 - 1)/8 (mod 2) よって ψ_2(ab) = ψ_2(a)ψ_2(b)
|

|