[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 2chのread.cgiへ]
Update time : 08/06 14:18 / Filesize : 315 KB / Number-of Response : 588
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

代数的整数論 005



451 名前:Kummer ◆g2BU0D6YN2 [2007/06/07(木) 22:55:14 ]
命題
D を平方数でない(正または負の)有理整数で、D ≡ 0 または 1 (mod 4)
とする。
F(D)/Γ の類 C が両面類であるためには、C の任意の元 (a, b, c) に
対して (a, -b, c) が C に含まれることが必要十分である。

証明
C の任意の元 (a, b, c) に対して (a, -b, c) が C に含まれれば、
>>449 より C は両面類である。

逆に C が両面類であるとする。
τ = (1, 0)/(0, -1) とおく。
C はある両面形式 f を含むから、>>449 より fτ ∈ C である。

g を C の任意の元とする。
このとき gτ が C に含まれることを示せばよい。

f と g は C の元だから fσ = g となる σ ∈ SL_2(Z) がある。
同様に fτ と g は C の元だから fτρ= g となる ρ ∈ SL_2(Z)
がある。
fσ = g より f = gσ^(-1) だから
fτρ= g より gσ^(-1)τρ = g である。

よって
gσ^(-1)τρτ = gτ

ここで κ = σ^(-1)τρτ とおくと
gκ = gτ

det(κ) = 1 だから gκ 従って gτ は C に含まれる。
証明終






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<315KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef