補題 a + b√(-1) ∈ Z[√(-1)] が λ = 1 + √(-1) で割れるためには a ≡ b (mod 2) が必要十分である。
証明 a + b√(-1) が λ で割れるとする。 a + b√(-1) = λ(c + d√(-1)) となる c, d ∈ Z がある。 λ(c + d√(-1)) = (1 + √(-1))(c + d√(-1)) = c + d√(-1) + c√(-1) - d = c - d + (c + d)√(-1) よって a - b = c - d - (c + d) = -2d である。 よって a ≡ b (mod 2) である。
逆に a ≡ b (mod 2) とする。 b = a + 2k となる k ∈ Z がある。 a + b√(-1) = a + (a + 2k)√(-1) = a(1 + √(-1)) + 2k√(-1) 2 は λ で割れるから a + b√(-1) は λ で割れる。 証明終