[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 2chのread.cgiへ]
Update time : 08/06 14:18 / Filesize : 315 KB / Number-of Response : 588
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

代数的整数論 005



30 名前:Kummer ◆g2BU0D6YN2 [2007/03/24(土) 13:00:38 ]
>>24 はいろいろ応用がある。

x, y, z ∈ Z として x^2 + y^2 = z^2 を考える。
gcd(x, y) = 1 と仮定する。

α = (x + y√(-1)) とおくと α ∈ Z[√(-1)] で
αα' = z^2 である。

α - α' = 2y√(-1)
α + α' = 2x
よって α と α' をともに割る素元 π があると、
gcd(x, y) = 1 だから π は 2 を割る。
よって π は λ = 1 + √(-1) と同伴である。
よって z は λ で割れるから z ∈ Z ∩ (λ) = 2Z となって
z は 2 で割れる。よって αα' = z^2 は 4 で割れる。
即ち αα' は λ^4 で割れる。よって α は λ^2 で割れる。
よって α は 2 で割れるが、これは gcd(x, y) = 1 に矛盾する。

以上から gcd(α, α') = 1 となり >>24 から
α = β^2 となる β ∈ Z[√(-1)] がある。
β = a + b√(-1) とおくと明らかに gcd(a, b) = 1 である。
β は λ で割れないから次に述べる補題から a ≡ b (2) ではない。

α = β^2 より α = a^2 - b^2 + 2ab√(-1)
よって
x = a^2 - b^2
y = 2ab
z^2 = αα' = (ββ')^2 = (a^2 + b^2)^2
よって z = a^2 + b^2






[ 続きを読む ] / [ 携帯版 ]

全部読む 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<315KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef