[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 2chのread.cgiへ]
Update time : 08/06 14:18 / Filesize : 315 KB / Number-of Response : 588
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

代数的整数論 005



249 名前:Kummer ◆g2BU0D6YN2 [2007/05/03(木) 18:16:34 ]
命題
R = [1, fω] を虚2次体 Q(√m) の整環とし、D をその判別式とする。
>>235 で 写像 ψ_IF : Cl(D) → (F_0)+(D)/Γ が
>242 で 写像 ψ_FI : (F_0)+(D)/Γ → Cl(D) が定義された。

(ψ_FI)(ψ_IF) = 1 である。

証明
>>207 より Cl(D) の代表として原始イデアル I が取れる。
>>210 より I = [a, b + (D + √D)/2] と書ける。
ここで a > 0, 0 ≦ b < a

α = a
β = b + (D + √D)/2 とおく。
-Δ(α, β) = a√D だから I の基底 α, β の向き(>>188)は正である。

>>228 において
(αα')/N(I) = a^2/a = a
-(αβ' + βα')/N(I) = -a(2b + D)/a = -2b - D
(ββ')/N(I) = (b^2 + bD + (D^2 - D)/4)/a

よって
ψ_IF({ I }) = { (a, -2b - D, (b^2 + bD + (D^2 - D)/4)/a) }

ψ_FI({ (a, -2b - D, (b^2 + bD + (D^2 - D)/4)/a) })
= { [a, b + (D + √D)/2] }

よって
(ψ_FI)(ψ_IF) = 1 である。
証明終






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<315KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef