[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 2chのread.cgiへ]
Update time : 08/06 14:18 / Filesize : 315 KB / Number-of Response : 588
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

代数的整数論 005



201 名前:Kummer ◆g2BU0D6YN2 [2007/04/28(土) 15:36:32 ]
R = [1, fω] を2次体 Q(√m) の整環とし、
I を R の分数イデアルとする。

分数イデアルの定義(>>148)より、
γI ⊂ R となる R の元 γ ≠ 0 がある。
γ' ∈ R だから
γ'γI ⊂ γ'R ⊂R

r = γγ' とおけば、r は有理整数で rI ⊂ R である。
rI は R のイデアルだから過去レス4の427より
rI = [a, b + cfω] と書ける。
ここで a > 0, 0 ≦ b < a, c > 0 で a と b は c で割れる。

I = [a/r, (b + cfω)/r] である。

Δ(a, b + cfω) = a(b + cfω') - a(b + cfω) = acf(ω' - ω)
= -ac√D

ac > 0 だから a, b + cfω の向きは正である。

Δ(a/r, (b + cfω)/r) = (1/r^2)Δ(a, b + cfω) だから
a/r, b + cfω/r の向きも正である。

即ち、
α = a/r
β = (b + cfω)/r とおけば
I = [α, β] で α, β の向きは正である。






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<315KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef