- 148 名前:Kummer ◆g2BU0D6YN2 [2007/04/21(土) 10:43:56 ]
- D を平方数でない有理整数で、D ≡ 0 または 1 (mod 4) とする。
過去スレ4の586より D はある2次体 Q(√m) の整環 R の 判別式である。 I を R の分数イデアル(過去スレ2の677)とする。 即ち、Q(√m) の R-部分加群 I が次の条件を満たすとき I を R の 分数イデアルと呼ぶ。 1) I ≠ 0 2) Q(√m) の元 x ≠ 0 で xI ⊂ R となるものがある。 定義より、I = (1/α)J と書ける。 ここで J は R のイデアルで α は R の元である。 I のノルム N(I) を N(I) = N(J)/|N(α)| で定義する。 これが J と α の取り方によらないことは証明を要する。
|

|