- 110 名前:Kummer ◆g2BU0D6YN2 [2007/04/08(日) 10:33:01 ]
- 補題
β > 1 を実無理数とする。 α = (aβ + b)/(cβ + d) とする。 ここで a, b, c, d は有理整数で ad - bc = ±1 であり、 c > d > 0 である。 このときある n ≧ 1 があり、 α = [k_0, . . . , k_(n-1), β] となる。 ここで、各 k_i は有理整数で i ≧ 1 のとき k_i ≧ 1 である。 証明 a/c を単純連分数(>>69)に展開して a/c = [k_0, . . . , k_(n-1)] とする。 >>107 より ad - bc = (-)^n と仮定してよい。 >>61 より [k_0, k_1, . . . , k_(n-1)] = p_(n-1)/q_(n-1) である。 ここで p_(n-1) = P(k_0, k_1, ... , k_(n-1)) q_(n-1) = P(k_1, ... , k_(n-1)) とおいた。 (続く)
|

|