- 107 名前:Kummer ◆g2BU0D6YN2 [2007/04/08(日) 01:21:03 ]
- 補題
t ≠ 0 を有理数とする。 t を有限単純連分数(>>69)に展開して t = [k_0, . . . , k_(n-1)] とするとき、項数 n を偶数または奇数の どちらにも出来る。 証明 t = [k_0, . . . , k_(n-1)] において n = 1 のとき 即ち t = [k_0] のときは t = [k_0 - 1, 1] でもある。 よって n ≧ 2 と仮定してよい。 k_(n-1) = 1 なら [k_0, . . . , k_(n-1)] = [k_0, . . . , k_(n-2) + 1] k_(n-1) > 1 なら [k_0, . . . , k_(n-1)] = [k_0, . . . , k_(n-1) - 1, 1] いずれの場合も、項数を偶数または奇数のどちらにも出来る。 証明終
|

|