- 103 名前:Kummer ◆g2BU0D6YN2 [2007/04/07(土) 18:05:37 ]
- 命題
α を2次の実無理数とする。 α を連分数に展開して、 α = [k_0, k_1, . . . ] とする。 n ≧ 0 に対して α_n = [k_n, k_(n+1), . . . ] とおく。 このとき、ある n_0 ≧ 0 があり n ≧ n_0 なら常に α_n は簡約された 2次無理数である。 証明 >>99 と同様にして、 α = (p_(n-1)α_n + p_(n-2))/(q_(n-1)α_n + q_(n-2)) である。 よって >>102 より β = (p_(n-1)β_n + p_(n-2))/(q_(n-1)β_n + q_(n-2)) となる。 ここで、β と β_n は α と α_n のそれぞれ共役である。 β_n = (q_(n-2)β - p_(n-2))/(-q_(n-1)β + p_(n-1)) 右辺の分子と分母をそれぞれ変形すると q_(n-2)β - p_(n-2) = q_(n-2)(β - p_(n-2)/q_(n-2)) -q_(n-1)β + p_(n-1) = -q_(n-1)(β - p_(n-1)/q_(n-1)) となる。 よって β_n = -(q_(n-2)/q_(n-1))(β - p_(n-2)/q_(n-2))/(β - p_(n-1)/q_(n-1)) (続く)
|

|