[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 2chのread.cgiへ]
Update time : 01/13 12:33 / Filesize : 331 KB / Number-of Response : 922
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

1=0.999… その13.999…



197 名前:132人目の素数さん mailto:sage [2006/11/05(日) 19:51:45 ]
(limの定義)
x=aの近傍Vで定義された関数f(x)の、x→aにおける極限値がαであるとは、
∀ε>0, ∃δ>0 s,t x∈(a−δ, a+δ)∩(V−{a}) → |f(x)−α|<ε
が成り立つときを言う。このときα=lim[x→a]f(x)と表記する。この
定義から明らかなように、lim[x→a]f(x)が存在すれば、fの定義域Vを
新たなaの近傍V'に拡張しても制限しても、lim[x→a]f(x)の値は変わらない。
なお、集合Vがaの近傍であるとは、(a−t, a+t)⊂Vを満たすt>0が
存在するときを言う。

(lim[h→0]h=0の証明)
VとしてRがとれる。任意のε>0に対して、δ=ε/2>0とすれば、h∈(0−δ, 0+δ)∩(R−{0})
ならば|h−0|<ε が成り立つので、定義からlim[h→0]h=0となる。






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<331KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef