[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2chのread.cgiへ]
Update time : 04/29 15:12 / Filesize : 339 KB / Number-of Response : 1002
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

代数的整数論 II



763 名前:9208 ◆lJJjsLsZzw [2006/01/19(木) 13:37:36 ]
>>710, >>711 の前に次の定義を述べたほうが良かった。

定義
A を離散付値環(前スレの645)とし、K をその商体とする。
m を A の極大イデアルとする。
x ≠ 0 を K の元とする。xA = m^n となる 整数 n
が一意に定まる。n = ν(x) と書く。
ν(0) = ∞ と定義する。
ここで ∞ は、任意の有理整数より大きい単なる記号と定義するだけで、
有理整数との演算は定義しない。

ν は、次の性質を持つ(証明は自明)。

1) ν(K^*) = Z、ここで K^* は K の乗法群であり、Z は有理整数環。

2) ν は K^* から Z への群としての射を定める。
つまり、 x ≠ 0, y ≠ 0 を K の元とすると、ν(xy) = ν(x) + ν(y)

3) K の元 x, y に対して ν(x + y) ≧ min(ν(x), ν(y))

ν を A で定まる離散付置とよぶ。






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<339KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef