- 231 名前:208 [2005/12/07(水) 14:53:31 ]
- 補題
A を環、M を A-加群とする。 f_1, ..., f_n を A の元とし、 Spec(A) = ∪D(f_i) とする。 各 M_(f_i) が A_(f_i)-加群として有限生成なら M も A-加群として 有限生成である。 証明 各 i に対して x_ij/(f_i)^m, j = 1, ..., i_r を M_(f_i) の 生成元とする。m は 各 i で共通としてよい。 {x_ij; i = 1, ..., n, j = 1, ..., i_r} で生成される M の 部分加群を N とする。 x ∈ M に対して、x/1 ∈ M_(f_i) より、 ((f_i)^t)x ∈ N となる整数 t > 0 がある。 t は 各 i で共通としてよい。 D(f_i) = D((f_i)^t) だから Spec(A) = ∪D((f_i)^t) = D((f_1)^t, ..., (f_n)^t) となる。 よって、(f_1)^t, ..., (f_n)^t が生成するイデアルは A となる。 よって、1 = Σg_i(f_i)^t となる元 g_1, ..., g_n がある。 よって、x = Σg_i((f_i)^t)x ∈ N となる。 x は任意だから、M = N である。 証明終
|

|