- 709 名前:208 [2005/11/10(木) 09:24:01 ]
- 命題
p を A の極大イデアル、M を p-加群 とする。 >>690より M は 単項 p-加群 M_i, i = 1, ..., r の有限個の直和となる。 |M_i| = p^(m_i) とする。 m_1 ≧ ... ≧ m_r と仮定してよい。 このとき、整数の組 (m_1, ... , m_r) は、 M により一意に決まる。 証明 Ann(M) = p^n とする。M の部分加群の列 M ⊃ pM ⊃ ... ⊃ p^(n-1)M ⊃ 0 を考える。この列の各剰余加群 p^(k-1)M/(p^k)M の長さを s_k と する。p の生成元をπとしたとき、πによる乗法により、 全射: p^(k-1)M/(p^k)M → (p^k)M/(p^(k+1))M が得られるから s_k ≧ s_(k+1) である。つまり、整数の降列 s_1 ≧ ... ≧ s_n が得られる。この列は、明らかに M だけで決まる。 これから、(m_1, ... , m_r) が決まることは、次のような図を書けば わかる。 まず、>>708 より s_1 = r_1 である。 s_1 個のブロック(レンガをイメージするとよい)を 横に水平に並べる。その上に左詰めに s_2 個のブロックを並べる。 同様にして、最後に s_n 個のブロックを並べる。 この図の左端の縦1列に並んだブロックの数が m_1 である(>>708)。 その隣の縦1列に並んだブロックの数が m_2 である(>>708)。 以下同様。 証明終
|

|