[表示 :
全て
最新50
1-99
101-
201-
301-
401-
501-
601-
701-
801-
901-
1001-
2chのread.cgiへ
]
Update time : 10/18 11:18 / Filesize : 321 KB / Number-of Response : 1002
[
このスレッドの書き込みを削除する
]
[
+板 最近立ったスレ&熱いスレ一覧
:
+板 最近立ったスレ/記者別一覧
] [
類似スレッド一覧
]
↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました
代数的整数論
708 名前:
208
[2005/11/10(木) 09:13:36 ]
命題
A を単項イデアル整域、p を A の極大イデアル、M を 単項 p-加群
M_i, i = 1, ..., r の有限個の直和とする。|M_i| = p^(m_i) とする。
n を {m_1, ... , mr} の最大値とする。
0 < k ≦ n のとき、leng(p^(k-1)M/(p^k)M) は、m_i ≧ k となる
i の個数に等しい。
証明
>>707
より明らか。
[
続きを読む
] / [
携帯版
]
全部読む
前100
次100
最新50
▲
[
このスレをブックマーク! 携帯に送る
]
2chのread.cgiへ
[
+板 最近立ったスレ&熱いスレ一覧
:
+板 最近立ったスレ/記者別一覧
]
(;´∀`)<321KB
read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) /
eucaly.net
products.
担当:undef