[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2chのread.cgiへ]
Update time : 10/18 11:18 / Filesize : 321 KB / Number-of Response : 1002
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

代数的整数論



623 名前:208 [2005/11/01(火) 11:22:15 ]
k を体、K/k を k の準ガロワ拡大(>>586)とする。
K の k-自己同型のなす群を Aut(K/k) と書く。
G = Aut(K/k) とおく。
K/k の中間体 L/k で有限次準ガロワ拡大となるものを考える。
G の元を L に制限することにより、群の射 G → Aut(L/k) が得られる。
これは、全射である。この核を G(L) と書く。G(L) は G の正規部分群
である。このような G(L) の全体は、>>607 の条件 (F) を満たす。
よって、G は >>607 により位相群となる。

命題
G はコンパクトである。

証明
>>621 より連続写像 f: G → proj.lim G/G(L) が定義される。
Ker(f) = ∩G(L) だが、これは明らかに G の単位元のみからなる。
よって、f は単射。G/G(L) = Aut(L/k) とみなされるから、
proj.lim G/G(L) の元 (σ_L)は、各 L/k にその自己同型 σ_L
を引き起こし、L ⊃ L' のときは σ_L' は σ_L の制限となっている。
K はこのような L の合併集合であるから、(σ_L)は G のある元σ
から引き起こされる。よって、f: G → proj.lim G/G(L) は全射である。
G/G(L) は有限群だから、離散位相でコンパクトである。
よってその直積 ΠG/G(L) もコンパクト。
proj.lim G/G(L) は、>>610より閉集合だから、proj.lim G/G(L) も
コンパクトである。f は、>>622 より開写像であるから、
G は、proj.lim G/G(L) と位相同型である。
よって、G もコンパクトである。
証明終






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<321KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef