[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2chのread.cgiへ]
Update time : 10/18 11:18 / Filesize : 321 KB / Number-of Response : 1002
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

代数的整数論



607 名前:208 [2005/10/31(月) 09:56:27 ]
Cohen-Seidenbergの第2定理(いわゆるGoing-down定理)に関連して、
無限次ガロワ拡大について述べる。これは数論においても重要である。
位相群の初歩については既知と仮定する。

命題
G を群、S を G の正規部分群の集合で以下の条件(F)を満たすものとする。

(F) N_1, N_2 ∈ S なら N_1 ∩ N_2 ⊃ N_3 となる N_3 ∈ S がある。

x ∈ G に対して、{xN; N ∈ S} を x の基本近傍系と定義することにより、
G は位相群となる。

証明
G の部分集合 U が以下の性質(O)を満たすとき、G の開部分集合と
定義する。

(O) x ∈ U なら xN ⊂ U となる N ∈ S が存在する。

G の開部分集合全体が位相を定めることは、条件 (*) より明らか。
y ∈ xN なら、yN = xN だから xN は開部分集合である。
よって、{xN; N ∈ S} は x の基本近傍系となる。

S の元 N は正規部分群だから、任意の x ∈ G に対して
xN = Nx となることに注意する。よって、
x, y ∈ G, N ∈ S に対して、(xN)(yN) = xyNN = xyN となる。
これから、G の積算法が定める写像 G x G → G は連続である。
(xN)^(-1) = Nx^(-1) = x^(-1)N だから、
x に その逆元 x^(-1) を対応させる写像 G → G も連続である。
よって G はこの位相により位相群となる。
証明終






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<321KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef