[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2chのread.cgiへ]
Update time : 05/09 20:46 / Filesize : 248 KB / Number-of Response : 1002
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

★東大入試作問者になったつもりのスレ★ 第三問



911 名前:132人目の素数さん mailto:sage [04/10/28 19:27:22]
(続き)
一般のとき。まずn≡0 (mod3)をしめす。
(I)m+n≡1(mod3)のとき。まずn≡1(mod3)と仮定する。このときm≡0(mod3)。
w[m+n-1]=u[n-1]=a、w[m+n]=v[0]=b、w[m+n+1]=v[1]=c、w[m+2n-2]=v[n-2]=dとおく。
このときw[m+2n-1]=v[n-1]=a。補題(1)より
wの第m項から第m+n-2項の和=wの第m+n+2項から第m+2n-3項の和+6
よってa+6=a+b+c+d。一方{a,b,c}={1,2,3}よりa+b+c=6。∴a=d。
∴w[m+2n-2]=w[m+2n-1]であるがこれはn=1の場合の結論に反する。
次にn≡2(mod3)と仮定する。このときm≡2(mod3)。
w[m]=u[0]=a、w[m+n-1]=u[n-1]=b、w[m+n+1]=v[1]=cとおく。
このときw[m+n]=v[0]=a。補題(1)より
wの第m+1項から第m+n-2項の和=第m+n+2項から第m+2n-1項の和
よってa+b=a+c。∴b=c。これは{a,b,c}={1,2,3}に反する。
(II)m+n≡2(mod3)のとき。この場合は(I)と同様。
(III)m+n≡0(mod3)のとき。まずn≡1(mod3)と仮定する。このときm≡2(mod3)。
w[m]=u[0]=a、w[m+2n-1]=v[n-1]=bとおくと(I)同様にしてa=b。
するとw[m+n-1]=u[n-1]=a、w[m+n]=v[0]=aとなるがこれはn=1の場合の結論に反する。
次にn≡1(mod3)と仮定する。このときm≡1(mod3)。
w[m]=u[0]=a、w[m+1]=u[1]=b、w[m+2n-2]=v[n-2]=c、w[m+2n-1]=v[n-2]=d、
とおくと(I)同様にしてa+b=c+d。よって(a,b)=(c,d) or (d,c)。すると
w[m+n-2]=u[n-2]=c、w[m+n-1]=u[n-1]=d、w[m+n]=v[0]=a、w[m+n+1]=v[1]=b、
となるが(a,b)=(c,d)でも(d,c)でもn=1の場合かn=2の結論に反する。
(I)〜(III)よりn≡0(mod3)がいえた。
すると
m≡0(mod3)のときはw'[m/3+i]=w[m+3i+1]=w[m+3i+n+1]=w'[m/3+i+n/3] (0≦i<n/3)、
m≡1(mod3)のときはw'[(m-1)/3+i]=w[m+3i]=w[m+3i+n]=w'[(m-1)/3+i] (0≦i<n/3)、
m≡2(mod3)のときはw'[(m+1)/3+i]=w[m+3i+2]=w[m+3i+n+1]=w'[(m+1)/3+i+n/3] (0≦i<n/3)、
となりいづれにせよ帰納法の仮定に反する。






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧]( ´∀`)<248KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef