[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2chのread.cgiへ]
Update time : 05/09 20:46 / Filesize : 248 KB / Number-of Response : 1002
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

★東大入試作問者になったつもりのスレ★ 第三問



903 名前:132人目の素数さん [04/10/27 21:46:29]
>>901
いや、証明を聞いているのだが

普通に考えれば、
x-y座標に置いて
A( 0,0 ) B(-1,1) C( a+1, a^2 ) D(b+1,b^2)
と置いて、線分ACとBDが
1) 交点を持たない、または、D(C)のみを共有する場合
2) D以外の交点を持つ場合
の二つに分け、1)の場合、放物線y=(x-1)^2上、C,Dの間に1点をとりそれをEと置けば、
線分AE、BE、放物線AB( これで言いたいことは分かるよね? )で囲まれる部分の面積
は線分AC,BD、放物線AB,CDで囲まれる部分の面積より小さい。
従って、S≧m またはS>mを満たす最良のmを検討するためには、1)の場合関数fが定数関数のみの
場合を検討すればよい。
この場合、この部分の面積は 線分AE、BE、ABによって囲まれる三角形の面積、と線分AB、放物線ABで囲まれる
面積の二つの和になる。 後者の面積は一定なので、△ABEの面積を最小にする場合を検討すればよい。
このような、場合はABに平行な直線が放物線y=(x-1)^2に接するところを求めればよく、その場合の面積は……


2)の場合、線分AC,BDの交点をEとおく。
明らかに求める部分の面積は、
(放物線AB、線分AE,BEで囲まれる部分の面積) + (放物線CD、線分CE,DEで囲まれる部分の面積)
以下であるため、このような部分の面積に注目すればよい。
また、線分ACが放物線y=(x-1)^2と交点を持てば、それを新たにCと置き直して、面積を小さくすることができるため
ACとこの放物線は交点を持たないと考えて良い。 同様にBDとこの放物線も交点を持たない。

このような場合……で計算がめんどくさくて、やってないのだが、どーなのよ?
そんな単純になるんかね?






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧]( ´∀`)<248KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef