[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2chのread.cgiへ]
Update time : 05/09 20:46 / Filesize : 248 KB / Number-of Response : 1002
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

★東大入試作問者になったつもりのスレ★ 第三問



737 名前:132人目の素数さん mailto:sage [04/10/18 08:04:54]
>>723
存在する。以下証明。
 
証明)lim[h→0](f(2h)-f(h))/h)=cとおく。g(x)=f(x)-f(0)-cxとおけば
lim[h→0](g(2h)-g(h))/h)=0。g'(0)が存在することがいえれば十分。
g(x)は原点で連続でg(0)=0である。
正の数e>0を固定すると仮定からd>0を十分ちいさくとって任意の-d<h<d、h≠0にたいして
-e<(g(2h)-g(h))/h<e⇔-eh<g(2h)-g(h)<ehが成立するようにできる。
よって任意の-d<h<d、h≠0にたいして
-eh/2<g(h)-g(h/2)<eh/2
-eh/4<g(h/2)-g(h/4)<eh/4
-eh/8<g(h/8)-g(h/8)<eh/8
・・・
をたしあわせて左辺の和>-eh、右辺の和<ehより-eh<g(h)-g(h/2^N)<eh。
N→∞とするとlim[h→0]g(h)=0から-eh≦g(h)≦eh。
よって任意の-d<h<d、h≠0に対して-e≦(g(h)-g(0))/h≦e。
eは任意の正の数であったから結局lim[h→0](g(h)-g(0))/h=0。証明終
ε-δ使わない証明おもいつかないな・・・






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧]( ´∀`)<248KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef